

The BEST Results in India! Dominant! Unparalleled!

ALL INDIA RANKS IN JEE-ADVANCED 2022

D JOHN JOSEPH | H.T.NO: 6036441*

JEE MAIN (JAN) 2023 (24-01-2023-Session-1)

MATHEMATICS, PHYSICS & CHEMISTRY

040 66 15 15 15

srichaitanya.net

◎ A.P ◎ T.S ◎ KARNATAKA ◎ TAMILNADU ◎ MAHARASTRA ◎ DELHI ◎ RANCHI

A right Choice for the Real Aspirant

ICON Central Office - Madhapur - Hyderabad

Jee-Main_Final_24-JAN-2023_Shift-01

IMPORTANT INSTRUCTION:

- 1. Immediately fill in the Admission number on this page of the Test Booklet with **Blue/Black** Ball Point **Pen** only.
- 2. The candidates should not write their Admission Number anywhere (except in the specified space) on the Test Booklet/ Answer Sheet.
- **3.** The test is of **3 hours** duration.
- 4. The Test Booklet consists of 90 questions. The maximum marks are **300**.
- 5. There are three parts in the question paper 1, 2, 3 consisting of Physics, Chemistry and Mathematics having 30 questions in each subject and subject having two sections.

(I) Section –I contains 20 multiple choice questions with only one correct option.

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

(II) Section-II contains 10 Numerical Value Type questions. Attempt any 5 questions only, if more than 5 questions attempted, First 5 attempted questions will be considered.

The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the nearest Integer value (Example i, e. If answer is above 10 and less than 10.5 round off is 10 and If answer is from 10.5 and less than 11 round off is 11).

To cancel any attempted question bubble on the question number box.

For example: To cancel attempted question 21. Bubble on 21 as shown below

Question Answered for Marking Question Cancelled for Marking

Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

- 6. Use Blue / Black Point Pen only for writing particulars / marking responses on the Answer Sheet. Use of pencil is strictly prohibited.
- 7. No candidate is allowed to carry any textual material, printed or written, bits of papers, mobile phone any electron device etc, except the Identity Card inside the examination hall.
- 8. Rough work is to be done on the space provided for this purpose in the Test Booklet only.
- 9. On completion of the test, the candidate must hand over the Answer Sheet to the invigilator on duty in the Hall.
- However, the candidate are allowed to take away this Test Booklet with them.
- 10. Do not fold of make any stray marks on the Answer Sheet

SRI CHAITANYA IIT ACADEMY, INDIA Jee Mains-2023_24th Jan_Shift-1 PHYSICS (SINGLE CORRECT ANSWER TYPE) This section contains 20 multiple choice questions. Each question has 4 options (1), (2), (3) and (4) for its answer, out of which ONLY ONE option can be correct. Marking scheme: +4 for correct answer, 0 if not attempted and -1 in all other cases. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as 01. Reason (R) Assertion (A): Photodiodes are preferably operated in reverse bias condition for light intensity measurement. Reason(R): The current in the forward bias is more than the current in the reverse bias for a p-n junction diode. In the light of the above statement, choose the correct answer from the options given below: 1) A is true but R is false. 2) Both A and R are true and R is the correct explanation of A 3) A is false but R is true. 4) Both A and R are true but R is Not the correct explanation of A. Kev: 4 Sol: Photo diodes are used in Reverse bias A travelling wave is described by the equation $y(x,t) = [0.05\sin(8x-4t)]m$ 02. The velocity of the wave is : [all the quantites are in SI unit] **2)** 8 ms^{-1} **3)** $0.5 m s^{-1}$ 1) 4 ms^{-1} 4) $2ms^{-1}$ Kev: 3 **Sol:** k = 8 $v = \frac{w}{1} = \frac{4}{9} = 0.5 \,\mathrm{ms}^{-1}$ Two long straight wires P and Q carrying equal current 10A each were kept parallel to each 03. other at 5 cm distance. Magnitude of magnetic force experienced by 10 cm length of wire P is F_1 . If distance between wires is halved and currents on them are doubled, force F_2 on 10 cm length of wire P will be : **2)** $8F_1$ **3)** $\frac{F_1}{9}$ 4) $\frac{F_1}{10}$ 1) $10F_1$ **Key: 2** $\therefore F_2 = \frac{\mu_0 (2i)^2 \ell}{2\pi (d/2)} = 8 \frac{\mu_0 i^2 \ell}{2\pi d}$ **Sol:** $B_1 = \frac{\mu_0 i}{2\pi d}$ $F_1 = B_1 i_2 \ell = \frac{\mu_0 i^2 \ell}{2\pi d}$ $F_{2} = 8F_{1}$ Page 2 Jee Mains-2023 24th Jan Shift-1

s s	RI CHAITANYA IIT ACADEMY, INDIA Jee Mains-2023_24th Jan_Shift-1
04.	Consider the following radioactive decay process
	$\overset{218}{\underset{84}{\longrightarrow}} A \xrightarrow{\alpha} A_1 \xrightarrow{\beta^-} A_2 \xrightarrow{\gamma} A_3 \xrightarrow{\alpha} A_4 \xrightarrow{\beta^+} A_5 \xrightarrow{\gamma} A_6$
	The mass number and the atomic number of A_6 are given by:
	1) 211 and 80 2) 210 and 80 3) 210 and 82 4) 210 and 84
Key:	2
Sol:	Effectively change in A and Z is due to α – decays only for the given
	Reaction.
	$\therefore A^1 = 218 - 2 \times 4 = 210$
	$Z^1 = 84 - 2 \times 2 = 80$
05.	From the photoelectric effect experiment, following observations are made. Identify which
	of these are correct.
	A) The stopping potential depends only on the work function of the metal.
	B) The saturation current increases as the intensity of incident light increases.
	incident light.
	D) Photoelectric effect can be explained using wave theory of light.
	Choose the correct answer from the options given below:
	1) A, B, D only 2) B only 3) A, C, D only 4) B,C only
Key:	
501:	Only B is correct
06.	1g of a liquid is converted to vapour at 3×10^5 Pa pressure. If 10% of the heat supplied is
	used for increasing the volume by $1600 \mathrm{cm}^3$ during this phase change, then the increase in
	internal energy in the measure will be
12	internal energy in the process will be :
	1) 4800 J 2) 4320 J 3) 4.32×10^8 J 4) 432000 J
Key:	2 Ja Educational
Sol:	$\Delta w = P \Delta V = 3 \times 10^5 \times 1600 \times 10^{-6}$
	$=480 \mathrm{J}$
	(10)(10) (10) 1001 (10) (10) (100) 12001
	$\therefore \left(\frac{100}{100}\right) (\Delta Q) = 480J \qquad \Rightarrow \Delta U = \left(\frac{100}{100}\right) (480) = 4320J$
Jee Ma	ins-2023_24 th Jan_Shift-1 Page 3

Set CHATTANYA IT ACADEMY, INDIA
Joe Maints-2023, 24% Jan, Shifts 1
9. In
$$\vec{E}$$
 and \vec{K} represent electric field and propagation vectors of the EM waves in vacuum, then magnetic field vector is given by : (ω -angular frequency):
1) $\frac{1}{\omega}(\vec{K} \times \vec{E})$ **2**) $\omega(\vec{K} \times \vec{E})$ **3**) $\vec{K} \times \vec{E}$ **4**) $\omega(\vec{E} \times \vec{K})$
Key: 1
Sol: $\vec{\nabla}$!! $\vec{E} \times \vec{B}$
Also $\nabla = \frac{W}{k}$
10. A circular loop of radius r is carrying current IA. The ratio of magnetic field at the center of circular loop and at a distance r from the center of the loop on its axis is:
1) 1: $3\sqrt{2}$ **2**) $2\sqrt{2}$:1 **3**) $3\sqrt{2}$:2 **4**) 1: $\sqrt{2}$
Key: 2
Sol: At centre, $B_1 = \frac{\mu_0 i}{2r}$
On the axis, $B_2 = \frac{\mu_0 i r^2}{2(r^2 + r^2)^{3/2}} = \frac{\mu_0 i r^2}{2 \times 2\sqrt{2} r^3}$
 $= \frac{\mu_0 i}{2 \times 2\sqrt{2r}}$
 $\therefore B_1: B_2 = 2\sqrt{2}:1$
11. A 100 m long wire having cross-sectional area 6.25×10^{-4} m² and Young's modulus is 10^{10} Nm⁻² is subjected to a load of 250N, then the elongation in the wire will be :
1) 6.25×10^{-4} m **2**) 4×10^{-3} m **3**) 4×10^{-4} m **4**) 6.25×10^{-6} m Key: **2**
Sol: $11. e = \frac{FI}{YA} = \frac{250 \times 100}{10^{10} \times 6.25 \times 10^{-4}}$

Jee Mains-2023_24th Jan_Shift-1 As per given figure, a weightless pulley P is attached on a double inclined frictionless 12. surface. The tension in the string (massless) will be (if $g = 10m / s^2$) l Kg **1**) $(4\sqrt{3}-1)$ N **2**) $4(\sqrt{3}-1)$ N **3**) $(4\sqrt{3}+1)$ N **4)** $4(\sqrt{3}+1)$ N Key: 4

Sol:
$$40\frac{\sqrt{3}}{2} - T = 4a$$
 $T - \frac{10}{2} = a \Rightarrow a = 4\sqrt{3} - 1T = 20\sqrt{3} - 4(4\sqrt{3} - 1)$
 $= 4\sqrt{3} + 4T = 4(\sqrt{3} + 1)$

As shown in the figure a network of resistors is connected to a battery of 24V with an 13. internal resistance of 3Ω . The current through the resistors R_4 and R_5 are I_4 and I_5 respectively. The values of I_4 and I_5 are :

Jee Mains-2023_24th Jan_Shift-1

Match List I with List II 14.

List I			List II
A.	Planck's constant (h)	I.	$\left[\mathbf{M}^{1}\mathbf{L}^{2}\mathbf{T}^{-2}\right]$
В.	Stopping potential (Vs)	II.	$\left[M^{1}L^{1}T^{-1}\right]$
C.	Work function (\emptyset)	III.	$\left[M^{1}L^{2}T^{-1}\right]$
D.	Momentum (p)	IV.	$\left[M^{1}L^{2}T^{-3}A^{-1}\right]$

Choose the correct answer from the options given below :

– I, D – II

3) $A - I,B - III,C - IV,D - II$ 4) $A - III,B - I,C - II$,D –	·IV
--	------	-----

Key: 2

Sol: Plank's constant dimensions \rightarrow Angular Momentum

Energy Stopping potential \rightarrow Change

Work function \rightarrow Energy

15. Given below are two statements :

Statement- I: An elevator can go up or down with uniform speed when its weight is balanced with the tension of its cable.

Statement-II: Force exerted by the floor of an elevator on the foot of a person standing on it is more than his/her weight when the elevator goes down with increasing speed.

In the light of the above statements, choose the correct answer from the options given below:

1. Statment I is false but Statement II is true.

2. Statement I is true but Statement II is false.

- ional Institution 3. Both Statement I and Statement II are false.
- 4. Both Statement I and Statement II are true.

Key: 2

 $T = m(g \pm a)$ for uniform speed, a=0 Sol:

$$\therefore T = mg$$

When speeding down,

$$N = m(g - a) \therefore N < mg$$

Jee Mains-2023_24th Jan_Shift-1

16. The weight of a body at the surface of earth is 18 N. The weight of the body at an altitude of

3200 km above the earth's surface is (given, radius of earth $R_e = 6400$ km):

1. 19.6 N 2. 9.8 N 3. 4.9 N 4.8 N

Key: 4

Sol:
$$W_G = mg \left[\frac{R}{R+G} \right]^2$$

= $18 \left[\frac{6400}{6400+3200} \right]^2$
= $18 \left[\frac{2}{3} \right]^2 = 8N$

17. A conducting circular loop of radius $\frac{10}{\sqrt{\pi}}$ cm is placed perpendicular to a uniform magnetic

field of 0.5 T. The magnetic field is decreased to zero in 0.5 s at a steady rate. The induced emf in the circular loop at 0.25 s is :

1) emf = 1mV 2) emf = 100mV 3) emf = 5mV 4) emf = 10mVKey: 4

Sol:
$$e = -\frac{\Delta \emptyset}{\Delta t} = \frac{\left(B_i - B_f\right)A}{\Delta t}$$

= $\frac{\left(0.5 - 0\right)}{0.5} \pi \left[\frac{10 \times 10^{-2}}{\sqrt{\pi}}\right]^2$
= $10^{-2}V = 10 mv$

 $glass \rightarrow air$

18. Given below are two statements :

Statement I : If the Brewster's angle for the light propagating from air to glass is θ_B . Then

the Brewster's angle for the light propagating from glass to air is $\frac{\pi}{2} - \theta_{\rm B}$

Statement II : The Brewster's angle for the light propagating from glass to air is $tan^{-1}(\mu_g)$

where μ_g is the refractive index of glass.

In the light of the above statements, choose the correct answer from the options given below

- 1) Both Statement I and Statement II are true.
- 2) Both Statement I and Statement II are false
- 3) Statement I is true but Statement II is false.
- 4) Statement I is false but Statement II is true.

Key: 3

Sol: $Air \rightarrow glass$

S	RI CHAITANYA IIT A	CADEMY, INDIA		Jee Mains-2023_24 th Jan_Shift-1
19.	The maximum	vertical height to wh	hich a man can throw a	a ball is 136 m. The maximum
	horizontal distance upto which he can throw the same ball is :			
	1) 68 m	2) 136m	3) 192 m	4) 272 m
Key:	4			
Sol:	$H_{\rm max} = \frac{u^2}{2g} \Rightarrow$	$\frac{u^2}{g} = 2(H_{\max})$	= 2(136)	$R_{\rm max} = 272 m$
20.	If two charges	q_1 and q_2 are separ	ated with distance 'd'	and placed in a medium of
	dielectric consta same electrosta	ant K. What will be tic force ?	the equivalent distance	e between charges in air for the
	1) $k\sqrt{d}$	2) 1.5d√k	3) $2d\sqrt{k}$	4) $d\sqrt{k}$
Key:	4			Illia
Sol:	Fair = $F_{dielectric}$			
	1 a a	1 a a		
	$\frac{1}{4\pi E_0} \frac{q_1 q_2}{d_a^2} = \frac{1}{4\pi E_0} \frac{q_1 q_2}{d_a^2} $	$\frac{1}{4\pi\varepsilon_0}\frac{q_1q_2}{kd^2} \Longrightarrow d_a =$	\sqrt{kd}	
		(NUM	IERICAL VALUE TYPE)	
Section-l	I contains 10 Numerical questions attempted. The	Alue Type questions. Attempt of Answer should be within 0 to 9	any 5 questions only. First 5 attemp 1 999. If the Answer is in Decimal th	oted questions will be considered if more than 5 hen round off to the nearest Integer value (Example i, e.
Marking	If answer is above 10 ar scheme: +4 for correct a	nd less than 10.5 round off is 10 nswer, 0 if not attempt and -1	andIf answer is from 10.5 and lease in all other cases.	ss than 11 round off is 11).
21.	A hole is drilled	l in a metal sheet. A	t 27°C the diameter of	of hole is 5 cm. When the sheet is
	heated to 177°	C , the change in the	diameter of hole is d	$\times 10^{-3}$ cm. The value of d will be
	if co	pefficient of linear e	xpansion of the metal	is $1.6 \times 10^{-5} / {}^{\circ}C$
Key:	12			
Sol:	$\Delta D = D \alpha \Delta t$			Such
12	$d \times 10^{-3} = (5)$	$(1.6 \times 10^{-5})(177 -$	27)	HUIDIC
	$= 8 \times 10^{-5} \times 14^{-5}$	50	1	ITSU
	$d = 12 \times 10^{-3}$		ducational	
	$a = 12 \times 10$		AUDIA	
			NDIA	

SRI CHAITANYA IIT ACADEMY, INDIA
22. A spherical body of mass 2 kg starting from rest acquires a kinetic energy of 10000 J at the end of 5th second. The force acted on the body is _____N.
Key: 40
Sol:
$$10^4 = \frac{1}{2}mv^2$$

$$= \frac{1}{2}(2)v^{2} \Rightarrow v = 100m / s$$
$$F = ma = m\left[\frac{V - u}{t}\right] = 2\left[\frac{100 - 0}{5}\right]$$
$$= 40N$$

23. A hollow cylindrical conductor has length of 3.14 m. while its inner and outer diameters are 4 mm and 8mm respectively. The resistance of the conductor is $n \times 10^{-3} \Omega$. If the resistivity of the material is $2.4 \times 10^{-8} \Omega m$. The value of n is _____

Sol:
$$R = \frac{gl}{A} = \frac{gl}{\frac{\pi}{4} \left[D_2^2 - D_1^2 \right]} = \frac{2.4 \times 10^{-8} \times 3.14}{\frac{3.14}{4} \left[64 - 16 \right] \times 10^{-6}}$$

= $\frac{9.6}{48} \times 10^{-2} = 2 \times 10^{-3} \Omega$

24. Assume that protons and neutrons have equal masses. Mass of a nucleon is 1.6×10^{-27} kg and radius of nucleus is 1.5×10^{-15} A^{1/3}m. The approximate ratio of the nuclear density and water density is $n \times 10^{13}$. The value of n is _____.

Sol:
$$S_{nucleus} = \frac{(m)A}{\frac{4}{3}\pi R^3} = \frac{1.6 \times 10^{-27} \times A}{\frac{4}{3} \times \pi \times 1.5^3 \times 10^{-45} \times A} = \frac{1.2 \times 10^{-27}}{\pi \times \frac{27}{8} \times 10^{-45}} = \frac{9.6}{\pi \times 27} \times 10^{18}$$

Ratio R= $\frac{S_N}{\ell_w} = \frac{960}{3.142 \times 27} \times \frac{10^{16}}{10^3} = 11.32 \times 10^{13}$

Jee Mains-2023_24th Jan_Shift-1

11

KOV

Jee Mains-2023_24th Jan_Shift-1

25. Vectors $a\hat{i} + b\hat{j} + \hat{k}$ and $2\hat{i} - 3\hat{j} + 4\hat{k}$ are perpendicular to each other when 3a + 2b = 7, the ratio of a to b is $\frac{x}{2}$. The value of x is ______

Key: 1

Sol:
$$(a\hat{i} + b\hat{j} + \hat{k}) \cdot (2\hat{i} - 3\hat{j} + 4\hat{k}) = 0, \ 2a - 3b + 4 \ge 0$$
(1)
 $3a + 2b - 7 \ge 0$ (2) $(given), (1) \times 3(-2) \times 2 \Longrightarrow -9b - 4b + 12 + 14 = 0$
 $\Rightarrow 13b = 26 \Rightarrow b = 2$, From (1), $2a - 3(2) + 4 = 0 \Rightarrow a = 1$
 $\therefore \frac{a}{b} = \frac{1}{2} \Rightarrow x = 1$

26. As shown in the figure, a combination of a thin plano concave lens and a thin plano convex lens is used to image an object placed at infinity. The radius of curvature of both the lenses is 30 cm and refraction index of the material for both the lenses is 1.75. Both the lenses are placed at distance of 40 cm from each other. Due to the combination, the image of the object is formed at distance x=_____cm. from concave lens.

Jee Mains-2023_24th Jan_Shift-1

27. A stream of a positively charged particles having $\frac{q}{m} = 2 \times 10^{11} \frac{C}{kg}$ and velocity

 $\vec{v}_0 = 3 \times 10^7 \text{ im / s is deflected by an electric field } 1.8 \text{ jkV / m}$. The electric field exists in a region of 10cm along x direction. Due to the electric field, the deflection of the charge particles in the y direction is _____mm.

Key: 2

Sol:
$$y = \frac{1}{2} \left(\frac{eq}{m}\right) \left(\frac{x}{v_0}\right)^2$$

= $\frac{1}{2} \times \left(1.8 \times 10^3 \times 2 \times 10^{11}\right) \left[\frac{10 \times 10^{-2}}{3 \times 10^7}\right]^2$
= $\frac{1.8}{9} \times \frac{10^{14}}{10^{16}} = 2 mm$

S.

28. In the circuit shown in the figure, the ratio of the quality factor and the band width is

Key: 10
Sol:
$$\frac{Q}{\Delta w} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{L}{R^2} \sqrt{\frac{L}{C}}$$

$$= \frac{3}{10^2} \sqrt{\frac{3}{27 \times 10^{-6}}} = 10$$
Equation 2023 24% for Shift 1

$$T = 2\pi \sqrt{\frac{m}{K_e}} = 2\pi \sqrt{\frac{2}{2 \times 20}} =$$

S	RI CHAITANYA IIT .	ACADEMY, INDIA		Jee Mains-2023_24 th Jan_Shift-1		
		<u>C</u>	<u>HEMISTRY</u>			
This secti	on contains 20 multiple	(SINGLE CO choice questions. Each question has	ORRECT ANSWER TYPE 4 options (1), (2), (3) and (4) for its	answer, out of which ONLY ONE option can be		
correct. Marking	scheme: +4 for correct	answer, 0 if not attempted and –	1 in all other cases.			
31.	In the depress	ion of freezing point ex	xperiment			
	A) Vapour pre	essure of the solution is	s less than that of pure	solvent		
	B) Vapour pressure of the solution is more than that of pure solvent					
	C) Only solute molecules solidify at the freezing point					
	D) Only solve	nt molecules solidify a	t the freezing point			
	Choose the mo	ost appropriate answer	from the options given	below:		
	1) A only	2) B and C only	3) A and C only	4) A and D only		
Key.	4					
Sol.	$P < P^0$ and during freezing only solvent particles freeze not solute					
	soln					
		A share	tio solvent			
	the hid solvent liq solution					
		V.1 <u>S</u>				
		ABAN	T			
	C					
1	A and D are co	orrect				
32.	Order of Cova	llent bond :	5			
1	A) $KF > KI; L$.iF > KF		MIDIE		
	B) $KF < KI; L$	iF > KF		ISTUUS		
	C) $SnCl_4 > Sn$	$Cl_2; CuCl > NaCl$	Incational .			
	D) $LiF > KF;$	CuCl < NaCl	MDIA			
	E) KF < KI; C	cuCl > NaCl	NUIK			
	Choose the co	rrect answer from the o	options given below :			
	1) A, B only	2) B, C only	3) B, C, E only	4) C, E only		

S	RI CHAITANYA IIT ACADEMY, INDIA	Jee Mains-2023 24th Jan Shift-1			
Key.	3				
Sol.	Covalent charcter α size of anion ,Co	valent charcter α 1/size of cation			
	Covalent charcter α charge on ions	Covalent charcter α charge on ions			
	A) Covalent character of KI > KF, B) Covalent character KI > KF, LiF > KF				
	C) Cations with pseudo octet are more covalent than cations having octet				
	\therefore CuCl > NaCl (covalent charcter)				
	D) CuCl > NaCl ,E) KI > KF, CuCl >	NaCl,∴ B, C & E are correct			
33.	Match List-I with List-II				
	List-I	List-II			
	A) Reverberatory furance	I) Pig Iron			
	B) Electrolytic cell	II) Aluminum			
	C) Blast furnace	III) Silicon			
	D) Zone Refining furnace	IV) Copper			
	Choosen the correct answer from the c	options given below :			
	1) A-I, B-III, C-II, D-IV	2) A-III, B-IV, C-I, D-II			
	3) A-I, B-IV, C-II, D-III	4) A-IV, B-II, C-I, D-III			
Key.	4				
Sol.	Reverberatory furnace \rightarrow Roasting of	Cu			
	Electrolytic cell \rightarrow Al ₂ O ₃ electrolytic	redcuction			
1	Blast furnance \rightarrow Smelting of Iron	antions			
	Zone refining \rightarrow metals used in semic	conductors.			
34.	Which of the following is true about fi	reons?			
	1) These are radicals of chlorine and c	hlorine monoxide			
	2) These are chlorofluorocarbon compounds				
	3) All radicals are called freons				
	4) These are chemicals causing skin ca	ancer			

S	RI CHAITANYA IIT ACADEMY, INDIA	Jee Mains-2023_24 th Jan_Shift-1
Key.	2	
Sol.	Freons are chlorofluorocarbons	
	$Eg :- CCl_2F_2, CFCl_3$	
35.	Match List-I with List-II	
	List-I	List-II
	A) Chlorophyll	I) Na ₂ CO ₃
	B) Soda ash	II) CaSO ₄
	C) Dentistry, Ornamental work	III) Mg ²⁺
	D) Used in white washing	IV) Ca(OH) ₂
	Choosen the correct answer from t	e options given below :
	1) A-III, B-I, C-II, D-IV	2) A-II, B-III, C-IV, D-I
	3) A-III, B-IV, C-I, D-II	4) A-II, B-I, C-III, D-IV
Key.		
Sol.	Chlorophyll \rightarrow Contain Mg ⁺² ions	
	Soda ash \rightarrow Anhydrous Na ₂ CO ₃	
	Dentistry \rightarrow CaSO ₄	
	White wash \rightarrow Ca(OH) ₂ absorb C	O ₂ to form hard coalting of CaCO ₃
36.	The magnetic moment of a transiti	n metal compound has been calculated to be 3.87 B.M.
	The metal ion is	
	1) Ti ²⁺ 2) Mn ⁺²	3) V^{2+} 4) Cr^{2+}
Key.	3	Institut
Sol.	$M.M = \sqrt{n(n+2)}(n = \text{ no. of unparticular})$	red e^{-s})
	$Ti^{+2} \rightarrow [Ar] 3d^2 \qquad n=2 \qquad M$	M = 2.44
	$Mn^{+2} \to [Ar]3d^5 n=5 \qquad M$	M = 5.91
	$V^{+2} \rightarrow [Ar] 3d^3 \qquad n=3 \qquad M$	M = 3.87
	$Cu^{+2} \rightarrow [Ar] 3d^9 n=1 \qquad M$	M = 1.73
Jee Ma	uins-2023_24th Jan_Shift-1	Page 17

Jee Mains-2023_24th Jan_Shift-1

4) Cu²⁺

 $\overset{\circ}{O}^{\circ}$ $\| \| \| \| \| H - \overset{\circ}{O}$ Red ppt

Key. 3

 $Ni^{+2} \xrightarrow{DMG} \text{Red ppt}$ Sol.

N - OHDMG

Jee Mains-2023_24th Jan_Shift-1

41. Reaction of BeO with ammonia and hydrogen fluoride gives A which on thermal

decomposition gives BeF₂ and NH₄F. What is 'A'?

1) (NH₄)BeF₃ **2**) H₃NBeF₃ **3**) (NH₄)Be₂F₅ **4**) (NH₄)₂BeF₄

Key. 4

Sol.

$$BeO \xrightarrow{NH_3} (NH_4)_2 BeF_4$$

$$\downarrow \Delta$$

$$BeF_2 + 2NH_3 + 2HF$$

42. Assertion (A) : Hydrolysis of an alkyl chlorde is a slow reaction but in the presence of NaI, the rate of the hydrolysis increases.

Reason (R) : I⁻ is a good nucleophile as well as a good leaving group

In the light of the abvoe statements, choose the correct answer from the options given below

1) A is false but R is true

2) A is true but R is false

3) Both A and R true abut R is NOT the correct explanation of A

4) Both A and R are true and R is the correct explanation of A

Key. 4

$$R - Cl \xrightarrow{aq. NaOH} R - OH$$
$$\boxed{NaI} R - I \xrightarrow{aq}_{NaOH} R - OH$$

Sol.

Inpresence of NaI, Cl get replaced by I, as I is beter L.G. than Cl reaction becomes faster Nucleophilicity α polarizing power

Nucleophilicity α size of anion, I^{Θ} is good Nu^{Θ} due to high polarizability

43. Given below are two statements

Statement-I : Noradrenaline is a neutrotransmitter

Statement-II : Low level of noradrenaline is not the cause of depression in human

In the light of the above statements, choose the correct answer from the options given below

Jee Mains-2023_24th Jan_Shift-1

4) $\frac{1}{2}$

nal Institutions

- SRI CHAITA<u>NYA IIT ACADEMY, INDIA</u> 1) Statement-I is incorrect but Statement-II is correct
 - 2) Both Statement-I and Statement-II are correct
 - 3) Statement-I is correct but Statement-II is incorrect
 - 4) Both Statement-I and Statement-II are incorrect

Key. 3

Sol. Noradrenaline is a neuro transmitter

It production of Noradrnaline is low then person will suffer with depression

It is observed that characteristic X-ray spectra of elements show regularity. When frequency **44**. to the power "n" i.e, v" of X-rays emitted is plotted against atomic number "Z", following graph is obtained.

3) 1

The value of "n" is

2) 3

Key. 4

1) 2

Key. 4
Sol.
$$\sqrt{v} = a(z-b)$$

 $V^n \alpha Z \Rightarrow n = \frac{1}{2}$

Sol. Stability of resonating structures

S I	RI CHAITANYA IIT A	CADEMY, INDIA		Jee Mains-2023 24th Jan Shift-1
48.	The primary an	d secondary valence	cies of cobalt respecti	vely in [Co(NH ₃₎₅ Cl]Cl ₂ are :
	1) 3 and 5	2) 2 and 6	3) 2 and 8	4) 3 and 6
Key.	4			
Sol.	Primary valency	y = +ve charge on	metal	
	Secondary vale	ncy = coordination	number	
	$\left[Co(NH_3)_5 Cl\right]$	$]Cl_2$		
49.	Statement-I : Fo	or colloidal particle	es, the values of collig	gative properties are of small order as
	compared to va	lues shown by true	solutions at same co	ncentration.
	Statement-II : F	For colloidal particl	les, the potential diffe	rence between the fixed layer and the
	diffused layer o	of same charges is o	called the electrokinet	ic potential or zeta potential.
	In the light of the	he above statement	s, choose the correct	answer from the options given below
	1) Statement-I	is false but Stateme	ent-II is true	
	2) Both Stateme	ent-I and Statemen	t-II are true	
	3) Statement-I	is tue but Statemen	t-II is false	
	4) Both Stateme	ent-I and Statemen	t-II are false	
Key.	3	193 A L		
Sol.	Statement-I : C	olloidal particles h	ave bigger size and h	ence smaller values of colligative
	properties. : tr	rue		
	Statement-II : Z	Zeta potential is the	potential difference	between diffused layer and fixed
	layer of opposit	te charges.		AUTOID
	∴ false	land	-	Insilic
	Statement-I : tr	ue Statement-II : fa	diselucation ²	
			INDIA	
			The state of the s	

Jee Mains-2023_24th Jan_Shift-1

(NUMERICAL VALUE TYPE)

Section-II contains 10 Numerical Value Type questions. Attempt any 5 questions only. First 5 attempted questions will be considered if more than 5 questions attempted. The Answer should be within 0 to 9999. If the Answer is in **Decimal** then round off to the **nearest Integer** value (Example i, e. If answer is above 10 and less than 10.5 round off is 10 andIf answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.

Jee Mains-2023_24th Jan_Shift-1

onal Institutions

53. At 298 K, a 1 litre solution containing 10m mol of $Cr_2O_7^{2-}$ and 100m mol Cr^{3+} shows a pH of 3.0.

Given:
$$Cr_2O_7^{2+} \rightarrow Cr^{3+}$$
; $E^0 = 1.330V$ and $\frac{2.303 \text{ RT}}{F} = 0.059 \text{ V}$

The potential for the half cell reaction is $x \times 10^{-3}$ V. The value of x is_____

Key. 917

Sol.
$$Cr_2 O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{+3} + 7H_2 O$$

 $E_{H.cell} = E^0 - \frac{0.059}{6} \log \frac{\left[Cr^{+3}\right]^2}{\left[Cr_2 O_7^{2-}\right] \left[H^+\right]^{14}}$
 $= 1.33 - \frac{0.059}{6} \log \frac{(0.1)^2}{(0.01)(10^{-3})^{14}} = 0.917 V$ $= 917 \times 10^{-3} V$

54. The dissociation constant fo acetic acid is $x \times 10^{-5}$. When 25 mL of 0.2 M CH₃COONa solution is mixed with 25 mL of 0.02 M CH₃COOH solution the pH of the resultant solution is found to be equal to 5. The value of x is _____

Sol.
$$[CH_3COO^-] = \frac{25 \times 0.2}{50}$$
 $[CH_3COOH] = \frac{25 \times 0.02}{50}$

Buffer soln :

$$pH = pKa + \log \frac{[salt]}{[acid]}$$

$$5 = pKa + \log \frac{0.2}{0.02} \Rightarrow pKa = 5 - 1 = 4$$

$$\Rightarrow Ka = 10^{-4} = 10 \times 10^{-5}$$

$$Ans = 10$$

55. For independent processes at 300 K

and I had had been					
Process	$\Delta H / kJ mol^{-1}$	$\Delta S / J K^{-1}$	-		
А	-25	-80	(PA)		
В	-22	40	Int		
С	25	-50			
D	22	20			

The number of non-spontaneous processes from the following is_____

Key. 2

Jee Mains-2023_24th Jan_Shift-1

S	SRI CHAITANYA IIT ACADEMY, INDIA Jee Mair	ns-2023_24 th Jan_S	hift-1
Key.	y. 7		
Sol.	$\left[CoCl_{4}\right]^{-2}$		
	$CO^{+2} \rightarrow [Ar] 3d^7 4s^0$		
	In tetrahedral complex		
	$ \begin{array}{c} \hline \\ \hline $		
	$\uparrow \downarrow \uparrow \downarrow e$		
	$\therefore m = 4 \& U.P. e^- = 3$		
	$\therefore \text{Ans} = 7$		
58.	5g of NaOH was dissolved in deionized water to prepare a 450 mL s volume (in mL) of this solution would be required to prepare 500 mI solution?	tock solution. L of 0.1 M	What
	Given : Molar Mass of Na, O and H is 23, 16 and 1g mol ⁻¹ respective	ely.	
Key.	y. 180		
Sol.	Molarity of stock soln $=\frac{n}{V} = \frac{(5/40)}{0.45}$		
	On dilution : $M_1V_1 = M_2V_2$		
	$\frac{5/40}{0.45} \times V = 0.1 \times 500 \qquad \qquad \Rightarrow V = 180 \text{ ml}$		
59.	The number of correct statements from the following is		
	A) Large the activation energy smaller is the value of the rate consta	nt.	
	B) The higher is the activation energy higher is the value of the temp	perature coeffic	ient.
	C) At lower temperatores increase in temperature causes more chang at higher temperature.	ge in the value of	of k than
/2	D) A plot of ln k vs $\frac{1}{T}$ is a straight line with slope equal to $-\frac{E_a}{R}$	Turne	
Key.	y. 3 Gallya Edward Instr		
Sol.	$K = Ae^{-Ea/RT}$		
	A) as E_a inc, K dec		
	B) temp coeff = $\frac{K_{t+10}}{K_t}$		
	$\ln\frac{K_2}{K_1} = \frac{E_a}{R} \left(\frac{10}{T_1 \cdot T_2}\right)$		
Jee Ma	Mains-2023_24 th Jan_Shift-1		Page 30

Jee Mains-2023_24th Jan_Shift-1

For same T_1, T_2 , as E_a inc, temp coeff inc.

C) At lower temperatures, inc in temp causes less change in value of K than at higher temperature

D)
$$\ln K = \ln A - \frac{E_a}{RT}$$

 $\therefore \ln K \text{ vs} \frac{1}{T}$ is a straight line with slope $= \frac{-E_a}{R}$

: true statements are : ABD

Ans = 3

60. When $Fe_{0.93}O$ is heated in presence of oxygen, it conversts to Fe_2O_3 . The number of correct statement/s from the following is _____

A) The equivalent weight of $Fe_{0.93}O$ is $\frac{Molecular weight}{0.79}$

B) The number of moles of
$$Fe^{2+}$$
 and Fe^{3+} in 1 mole of $Fe_{0.93}O$ is 0.79 and 0.14 respectively

C) $Fe_{0.93}O$ is metal deficient with lattice comprising of cubic closed packed arragement of O^{2-} ions.

D) The % composition of Fe^{2+} and Fe^{3+} in $Fe_{0.93}O$ is 85% and 15% respectively

Key. 4

Sol.
$$Fe_{0.93}O \longrightarrow Fe_2O_3$$

For every 100 O atoms, 93 Fe atoms are present. If no. of $Fe^{+2} = x$, $Fe^{+3} = 93 - x$ Charge balanced $\Rightarrow 2x + 3(93 - x) = 200$

$$\Rightarrow x = 79 \ Fe^{+2} \qquad \Rightarrow 14 \ Fe^{+3}$$

A) Total change of oxidation state $= 0.79 \times 1 = 0.79$ for 1 mole

$$\therefore$$
 Eq.wt = $\frac{M.wt}{0.79}$

B) In 1 mole of $Fe_{0.93}O$, 0.79 moles of Fe^{+2} , 0.14 moles of Fe^{+3} .

C) $2Fe^{+3}$ ions replace $3Fe^{+3}$ ions. It is a metal deficiency defect

D) %
$$Fe^{+2} = \frac{79}{93} \times 100 \approx 85\%$$

 $Fe^{+3} = 15\%$ All statements are true

SET CHAITANYA IT ACADEMY, INDIA
INTERMATICS
SINGLE CORRECT ANSWER TYPE)
The section contains 20 multiple duice quantion. Each quantum (1/(2), (3) and (4) for its onwer, out of which ONLY ONE option can be derived.
61. Let
$$y = y(x)$$
 be the solution of the differential equation $x^3 dy + (xy-1) dx = 0, x > 0, y(\frac{1}{2}) = 3 - e$.
Then $y(1)$ is equal to
1) $2 - e$ 2) e 3) 1 4) 3
Key: 3
Sol: Given $x^2 dy + (xy-1) dx = 0$
 $\frac{dy}{dx} + \frac{y}{x^2} = \frac{1}{x^3}$
 $1.1^2 = e^{\frac{1}{x}}$
Solution is $y(e^{\frac{1}{x}}) = \int \frac{1}{x^2}(e^{\frac{1}{x}}) + e$
Put $-\frac{1}{x} = t = \frac{1}{x^2} dx = dt$
 $y(e^{\frac{1}{x}}) = \int -te^t + e^{-\frac{1}{x}}(\frac{1}{x}+1) + e^{-\frac{1}{x}}$
Given $y(\frac{1}{2}) = 3 - e \Rightarrow y(1) - 1$
62. The area enclosed by the curves $y^2 + 4x = 4$ and $y - 2x = 2$ is
1) $\frac{23}{3}$ 2) $\frac{22}{3}$ 3) 9 4) $\frac{25}{3}$
Key: 3
Sol: Given curves are $y^2 + 4x = 4$ and $y - 2x = 2$
Curves are Intersecting
 $x = \frac{4 - y^2}{4} = \frac{y - 2}{2} = \frac{y^2}{4} + \frac{y}{2} - 2$ Area $= \frac{x^{44}}{6a^2} = 9$

S	RI CHAITANYA IIT ACADEMY	, INDIA		Jee Mains-2023_24th Jan_Shift-1
Sol:	$(a-c)\alpha^2+(b-a)\alpha+(c-a)\alpha$	(b) = 0		
	$\frac{(a-c)^2}{(b-a)(c-b)} + \frac{(b-a)}{(a-c)(c-b)}$	$(c-b)^{2} + \frac{(c-b)^{2}}{(a-c)(b-c)^{2}}$	a)	
	$=\frac{(a-c)^{3}+(b-a)^{3}+(c-a)^{3}+($	$b)^{3}$		
	$= 3 \qquad \begin{pmatrix} \because & x + y + z \\ \Rightarrow & x^2 + y^2 + \end{pmatrix}$	$= 0$ $z^{2} = 3xyz$		
66.	$\lim_{t \to 0} \left(1^{\frac{1}{\sin^2 t}} + 2^{\frac{1}{\sin^2 t}} + \dots + n^{\frac{1}{\sin^2 t}} \right)$	$\left(\frac{1}{2^{2}t}\right)^{\sin^{2}t}$ is equal to)	
	1) <i>n</i> ² 2)	$n^2 + n$	3) <i>n</i>	4) $\frac{n(n+1)}{2}$
Key:	3			
Sol:	$\lim_{t\to 0} \left(n^{\frac{1}{\sin^2 t}}\right)^{\sin^2 t} \left(\left(\frac{1}{n}\right)^{\cos ec^2 t} + \frac{1}{2}\right)^{\frac{1}{2}} \left(\left(\frac{1}{n}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} + \frac{1}{2}\left(\left(\frac{1}{n}\right)^{\frac{1}{2}}\right)^{\frac{1}{2}} + \frac{1}{2}\left(\left(\frac{1}{n}\right)^{\frac{1}{2}}\right)$	$\left(\frac{2}{n}\right)^{\cos ec^2 t} + \dots +$	$1^{\cos ec^2 t} \int_{0}^{\sin^2 t} dt$	
	$(As \ n \to \infty, r^n \to 0 \ w)$	$hen \ 0 < x < 1 \big)$		
	(n)(0+0++1) = n	100000		
67.	The distance of the po	int (-1,9,-16) fr	from the plane $2x+3$	3y - z = 5 measured parallel to the
	line $\frac{x+4}{3} = \frac{2-y}{4} = \frac{z-3}{12}$	is		
	1) 20√2 2) 2	31	3) 13√2	4) 26
Key:	4 Stipp			sinns
Sol:	Distance of (-1,9,-16)	from plane $2x$ -	+3y-z-5=0	Institute
	Measured parallel to li	ne $\frac{x+4}{3} = \frac{y-2}{-4}$	$\frac{z-3}{12}$ ational	IIIce
	Is $\left \frac{ax_1 + by_1 + cz_1 + d}{al + bm + cn} \right $ wh	ere <i>l,m,n</i> are d.	c's of line	
	=26			

SRI CHAITANYA IIT ACADEMY, INDIA Jee Mains-2023_24th Jan_Shift-1 Let N denote the number that turns up when a fair die is rolled. If the probability that the **68**. system of equations

x + y + z = 12x + Ny + 2z = 23x + 3y + Nz = 3has unique solution is $\frac{k}{6}$, then the sum of value of k and all possible value of N is **2)** 19 **3)** 20 4) 21 1) 18 $\begin{vmatrix} 1 & 1 & 1 \\ 2 & N & 2 \\ 3 & 3 & N \end{vmatrix} \neq 0 \Longrightarrow N \neq 4, N = 1, 2, 3, 5, 6$ But when N = 2 or 3 system has Infinite solution \therefore Probability = $\frac{3}{6}$ \therefore Sum = (1+2+3+5+6)+3=20Let $f(x) = \begin{cases} x^2 \sin\left(\frac{1}{x}\right) &, x \neq 0 \\ 0 &, x = 0 \end{cases}$ 69. Then at x=01) f is continuous but not differentiable 2) f is continuous but f' is not continuous 3) f'is continuous but not differentiable (0) Educational Institutions

4) f and f' both are continuous

Sol:
$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x^2 \sin\left(\frac{1}{x}\right) = 0 = f$$

f is continuous at 0

$$f'(x) = -\cos\left(\frac{1}{x}\right) + 2x\sin\left(\frac{1}{x}\right), f'(x)$$
 is discontinuous at $x = 0$

Because $\lim_{x\to 0} f'(x)$ does not exist

Jee Mains-2023_24th Jan_Shift-1

S	<u>RI CHAITANYA IIT ACAI</u>	DEMY, INDIA		Jee Mains-2023_24 th Jan_Shift-1	
72.	$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right) $ is equal to				
	1) $\frac{\pi}{2}$	2) $\frac{\pi}{4}$	3) $\frac{\pi}{6}$	4) $\frac{\pi}{3}$	
Key:	4				
Sol:	$\tan^{-1}\left(\frac{1+\sqrt{3}}{3+\sqrt{3}}\right) + \sec^{-1}$	$-1\left(\sqrt{\frac{8+4\sqrt{3}}{6+3\sqrt{3}}}\right)$			
	$=\tan^{-1}\left(\frac{1}{\sqrt{3}}\right) + \sec^{-1}$	$\left(\frac{2}{\sqrt{3}}\right)$	$=\frac{\pi}{6}+\frac{\pi}{6}=\frac{\pi}{3}$		
73.	The equation $x^2 - 4x + [x] + 3 = x[x]$, where [x] denote the greatest integer function, has				
	1) no solution		2) exactly two sol	utions in $(-\infty,\infty)$	
	3) a unique solution	on in $(-\infty,1)$	4) a unique solution	on in $(-\infty,\infty)$	
Key:	4				
Sol:	$x^2 - 4x + 3 = x[x] - [$	x]			
	(x-1)(x-3) = (x-1)	(x]	$\Rightarrow x = 1$ or	x-3=[x]	
	$\Rightarrow x - [x] = 3 \text{ not po}$	ossible	$\Rightarrow \{x\} = 3$		
	$\therefore x = 1$ is only solu	tion			
74.	Let $p,q \in \mathbb{R}$ and (1)	$(1 - \sqrt{3}t)^{200} = 2^{199} (p + iq)$	$(q), i = \sqrt{-1}$ Then $p + q$	$q+q^2$ and $p-q+q^2$ are roots of the	
	equation.			HAITS	
14	1) $x^2 - 4x + 1 = 0$	2) $x^2 + 4x + 1 = 0$	3) $x^2 - 4x - 1 = 0$	$4) \ x^2 + 4x - 1 = 0$	
Key:	1	Canva E	thentional	IIPO	
Sol:	$\left(1+\sqrt{3}i\right)^{200} = 2^{199} \left(p\right)^{199}$	+iq)	licatione		
	$2^{200} \left(\frac{1}{2} + i \cdot \frac{\sqrt{3}}{2}\right)^{200} = 2$	$2^{199}(p+iq)$	$\Rightarrow 2\left(-w^2\right)^{200} = p + ia$	9	
	$\Rightarrow 2w = p + iq \Rightarrow P =$	$= -1, q = \sqrt{3}$			
	Required equation	is $x^2 - 4x + 1 = 0$			
Jee Ma	ins-2023 24 th Jan Shift-	-1		Page 37	

Jee Mains-2023_24th Jan_Shift-1

ional Institutions

75. If A and B are two non-zero $n \times n$ matrices such that $A^2 + B = A^2 B$, then

1)
$$A^2 = I$$
 or $B = I$ **2)** $A^2B = BA^2$ **3)** $AB = I$ **4)** $A^2B = I$

Key: 2

- Sol: $A^2 + B = A^2 B$ $A^2 B - A^2 - B = 0$ $B(A^2 - I) - (A^2 - I) = I$ $(B - I)(A^2 - I) = I$ $\Rightarrow BA^2 - B - A^2 = 0 \Rightarrow BA^2 = B + A^2 = A^2 B$ $\therefore BA^2 = A^2 B$
- 76. Let a tangent to the curve $y^2 = 24x$ meet the curve xy = 2 at the points A and B. Then the mid points of such line segments AB lie on a parabola with the
 - 1) length of latus rectum $\frac{3}{2}$ 2) length of latus rectum 23) directrix 4x = 34) directrix 4x = -3

Key: 3

Sol: Let $p(x_1, y_1)$ be midpoint of AB of curve xy = 2 then equation of AB is $S_1 = S_{11}$

$$\Rightarrow \frac{1}{2}(xy_1 + x_1y) = \frac{1}{2}x_1y_1$$

$$\Rightarrow xy_1 + x_1y - x_1y_1 = 0 \text{ is tangent of } y^2 = 24x$$

$$\Rightarrow am^2 = \ln$$

Locus is $6(x_1^2) = y_1(-x_1y_1)$
Locus is $y^2 = -6x$
Directrix is $4x = 3$

SRIGHATTAVYA IT ACADEMY, INDIA
Joe Maine 2023, 24* Jon, Shift 1
77. The distance of the point
$$(7, -3, -4)$$
 from the plane passing through the points
 $(2, -3, 1), (-1, 1, -2)$ and $(3, -4, 2)$ is
1) $5\sqrt{2}$ **2**) $4\sqrt{2}$ **3**) 4 **4**) 5
Key: 1
Sol: Plane passing through the points $(2, -3, 1), (-1, 1, -2)$ and $(3, -4, 2)$ is
 $\begin{vmatrix} x-2 & y+3 & z-1 \\ 3 & -4 & 3 \\ -1 & 1 & -1 \end{vmatrix} = 0$
 $\Rightarrow x-z-1=0$
Required distance $=\frac{10}{\sqrt{2}} = 5\sqrt{2}$
78. The compound statement $(\sim (P \land Q)) \lor ((\sim P) \land Q) \Rightarrow ((\sim P) \land (\sim Q))$ is equivalent to
1) $((-P) \lor Q) \land ((\sim Q) \lor P)$ **2**) $(-Q) \lor P$
3) $((-P) \lor Q) \land (\sim Q)$ **4**) $(\sim P) \lor Q$
Key: 1
Sol: Use Truth Table
79. The relation $R = \{(a,b): gcd(a,b) = 1, 2a \neq b, a, b \in \mathbb{Z}\}$ is
1) reflexive but not symmetric
2) transitive but not reflexive
3) symmetric but not transitive
4) neither symmetric nor transitive
Key: 4
Sol: $a, b, e, z, GCD(a, b) = 1, b \neq 2a$
 $GCD(a, a) \neq 1 \Rightarrow$ Not Transitive
 $GCD(a, b-1) \Rightarrow GCD(b, a) - 1 \Rightarrow$ Symmetric

s and a second	RI CHAIT	ANYA IIT ACADEMY, INDIA		Jee Mains-2023_24 th Jan_Shift-1		
80.	Let \vec{u} =	$=\hat{i}-\hat{j}-2\hat{k}, \vec{v}=2\hat{i}+\hat{j}-\hat{k}, \vec{v}.\vec{w}=2\hat{i}+\hat{j}-\hat{k}$	$\vec{v} \times \vec{w} = \vec{u} + \vec{v}$	$\lambda \vec{v}$. Then $\vec{u}.\vec{w}$ is equal to		
	1) 1	2) 2	3) $\frac{3}{2}$	4) $-\frac{2}{3}$		
Key:	1					
Sol:	$(\vec{v} \times \vec{w})$	$\times \vec{v} = \vec{u} \times \vec{v}$				
	$\Rightarrow \left \vec{v} \right ^2 \vec{v}$	$\vec{v} - (\vec{v}.\vec{w})\vec{v} = \vec{u} \times \vec{v}$				
	$\Rightarrow \vec{w} =$	$\left(\frac{7}{6}, \frac{-1}{6}, \frac{1}{6}\right)$				
	$\vec{u}.\vec{w}=1$					
		(NU	MERICAL VALU	JE TYPE)		
Section-II contains 10 Numerical Value Type questions. Attempt any 5 questions only. First 5 attempted questions will be considered if more than 5 questions attempted. The Answer should be within 0 to 9999. If the Answer is in Decimal then round off to the nearest Integer value (Example i, e. If answer is above 10 and less than 10.5 round off is 10 andIf answer is from 10.5 and less than 11 round off is 11). Marking scheme: +4 for correct answer, 0 if not attempt and -1 in all other cases.						
81.	Let $\lambda \in$	$\mathbb{R} \mathbb{R}$ and let the equation E b	$e x ^2 - 2 x + \lambda - \lambda $	3 =0. Then the largest element in the set		
	$S = \big\{ x +$	λ : x is an in integer solution of	f E}is			
Key:	5					
Sol:	$ x ^2 - 2 x + \lambda - 3 = 0$					
	For rea	al roots $\Delta \ge 0$				
	$\Rightarrow \lambda - \lambda $	$ \leq 1$				
	$\Rightarrow 2 \le \lambda \le 4$					
	wnen	$l = 4 \Longrightarrow x - 2 x + 1 = 0$				
	$\Rightarrow x = 1 \Rightarrow x = -1, 1$					
	Larges	$\text{st element} = x + \lambda = 5$				
82.	A boy needs to select five courses from 12 available courses, out of which 5 courses are language courses. If he can choose at most two language courses, then the number of ways he can choose five courses is					
Key:	546	11/2	Edwarth	0081 10		
Sol:		L (7)	51111111	0.1 (7)		
		Languages (5)	UNDAR	Other (7)		
		2		$3 \rightarrow 5_{c_2} \cdot 7_{c_3} = 350$		
		1		$4 \rightarrow 5_{C_1} \cdot 7_{C_4} = 175$		
		0		$5 \rightarrow 5_{C_0} \cdot 7_{C_5} = 21$		
				= 546		

Jee Mains-2023_24th Jan_Shift-1

Page 40

S	RI CHAITANYA IIT ACADEMY, INDIA	Jee Mains-2023_24th Jan_Shift-1
	$8\frac{\pi^2}{2}$ $(\cos x)^{2023}$	
83.	The value of $\frac{1}{\pi} \int_{0}^{1} \frac{(\cos x)}{(\sin x)^{2023} + (\cos x)^{2023}} dx$ is	
Key:	2	
Sol:	$I = \int_{0}^{\frac{\pi}{2}} \frac{\left(\cos x\right)^{2023}}{\left(\sin x\right)^{2023} + \left(\cos x\right)^{2023}}$	
	Using kings property $I = \int_{0}^{\frac{\pi}{2}} \frac{(\sin x)^{2023}}{(\cos x)^{2023} + (\sin x)^{2023}}, 2I = \int_{0}^{\frac{\pi}{2}} 1.dx \Rightarrow I$	$=\frac{\pi}{4}$
84.	The shortest distance between the lines $\frac{x-2}{3} = \frac{y+1}{2} = \frac{z-6}{2}$ and	d $\frac{x-6}{3} = \frac{1-y}{2} = \frac{z+8}{0}$ is equal to
Key:	14	
Sol:	Lines are $\frac{x-2}{2} = \frac{y+1}{2} = \frac{z-6}{2}$	
	$\frac{x-6}{3} = \frac{y-1}{-2} = \frac{z+8}{0} \qquad S.D = \frac{\left[\vec{c} - \vec{a} \vec{b} \vec{d}\right]}{\left \vec{b} \times \vec{d}\right } = 14$	
95	The 4^{th} term of CD is 500 and its common ratio is $\frac{1}{2}$ we N. I	at C denote the sum of the
05.	The 4 term of OP is 500 and its common ratio is $-, m \in \mathbb{N}$. I	Let S_n denote the sum of the
	first <i>n</i> terms of this GP. If $S_6 > S_5 + 1$ and $S_7 < S_6 + \frac{1}{2}$. then the results of the second s	number of possible values of m
.	is	
Key: Sol:	$\frac{12}{S_s - S_s} > 1 \Longrightarrow ar^5 > 1$	
	$S_6 = S_5 < 1 \implies ar < \frac{1}{2}$	
	$S_7 - S_6 < \frac{1}{2} \rightarrow m_6 < \frac{1}{2}$	
	Also given $ur = 500$ $\Rightarrow 500r^2 > 1 \Rightarrow r^2 > \frac{1}{2} \forall r^3 < \frac{1}{2}$	Balls
14	500° 1000 No of possible values are 12	ATTUU
	No.01 possible values are 12	Suc
86.	Let C be the largest circle centred at $(2,0)$ and inscribed in the	the ellipse $\frac{x^2}{2c} + \frac{y^2}{1c} = 1.$
	If $(1, \alpha)$ lies on C, then $10\alpha^2$ is equal to	30 10
Key:	118	
Sol:	Let circle is $(x-2)^2 + y^2 = r^2$, $\frac{x^2}{36} + \frac{y^2}{16} = 1 \Rightarrow \frac{x^2}{36} + \frac{r^2 - (x-2)^2}{16} = 1$	
	$\Rightarrow 16x^{2} + 36(r^{2} - (x - 2)^{2}) = (36)(16)$	
Jee Ma	ins-2023_24th Jan_Shift-1	Page 41

s s	RI CHAITANYA IIT ACADEMY, INDIA Jee Mains-2023_24 th Jan_Shift-1					
	Using $\Delta = 0$ we get $r^2 = \frac{320}{25}$, circle is $(x-2)^2 + y^2 = \frac{320}{25}$					
	(1, α) lies on this circle $\Rightarrow \alpha^2 = \frac{59}{5}$ 10 $\alpha^2 = 118$					
87.	Let a tangent to the curve $9x^2 + 16y^2 = 144$ intersect the coordinate axes at the points A and B.					
Kev:	Then, the minimum length of the line segment AB is7					
Sol:	Ellipse is $\frac{x^2}{16} + \frac{y^2}{9} = 1$					
	Minimum length of tangent to ellipse between axis $= a + b = 7$					
88.	Suppose $\sum_{r=1}^{2023} r^2 = 2023 \times \alpha \times 2^{2022}$. Then the value of α is					
Key:	1012					
Sol:	$\sum r^2 C_r = n(n+1)2^{n-2} = (2023)(2024).2^{2021}$					
	$= (2023) \times 2^{2022} (1012) \qquad \qquad \alpha = 1012$					
89.	The value of $12\int_{0}^{3} x^2 - 3x + 2 dx$ is					
Key:	22					
Sol:	$\int (x^2 - 3x + 2) dx + \int (-2 + 3x - x^2) dx + \int (x^2 - 3x + 2) dx$					
	$= \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right)_{0}^{1} + \left(-2x + \frac{3x^{2}}{2} - \frac{x^{3}}{3}\right)_{1}^{2} + \left(\frac{x^{3}}{3} - \frac{3x^{2}}{2} + 2x\right)_{2}^{3}$					
1	$= \left(\frac{1}{3} - \frac{3}{2} + 2\right) + \left(-4 + \frac{12}{2} - \frac{8}{3}\right) - \left(-2 + \frac{3}{2} - \frac{1}{3}\right) + \left(\frac{3}{3} - \frac{3(3)}{2} + 2(3)\right) - \left(\frac{2^{3}}{3} - \frac{3(2)}{2} + 2(2)\right)$					
	$\mathbf{Rv} = (4 - 18 + 24) + (-48 + 72 - 32) - (-24 + 18 - 4) + (108 - 162 + 72) - (32 - 72 + 48)$					
90.	The number of 9digit numbers, that can be formed using all the digits of the number					
Varia	123412341 so that the even digits occupy only even places, is					
Key: Sol:						
	No.of ways $=\frac{4!}{2!2!} \times \frac{5!}{3!2!} = 60$					